3.5 \(\int \frac{a+a \cot (c+d x)}{\sqrt{e \cot (c+d x)}} \, dx\)

Optimal. Leaf size=49 \[ \frac{\sqrt{2} a \tan ^{-1}\left (\frac{\sqrt{e} (1-\cot (c+d x))}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{d \sqrt{e}} \]

[Out]

(Sqrt[2]*a*ArcTan[(Sqrt[e]*(1 - Cot[c + d*x]))/(Sqrt[2]*Sqrt[e*Cot[c + d*x]])])/(d*Sqrt[e])

________________________________________________________________________________________

Rubi [A]  time = 0.0442104, antiderivative size = 49, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {3532, 205} \[ \frac{\sqrt{2} a \tan ^{-1}\left (\frac{\sqrt{e} (1-\cot (c+d x))}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{d \sqrt{e}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cot[c + d*x])/Sqrt[e*Cot[c + d*x]],x]

[Out]

(Sqrt[2]*a*ArcTan[(Sqrt[e]*(1 - Cot[c + d*x]))/(Sqrt[2]*Sqrt[e*Cot[c + d*x]])])/(d*Sqrt[e])

Rule 3532

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*d^2)/f,
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{a+a \cot (c+d x)}{\sqrt{e \cot (c+d x)}} \, dx &=-\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{-2 a^2-e x^2} \, dx,x,\frac{a-a \cot (c+d x)}{\sqrt{e \cot (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{2} a \tan ^{-1}\left (\frac{\sqrt{e} (1-\cot (c+d x))}{\sqrt{2} \sqrt{e \cot (c+d x)}}\right )}{d \sqrt{e}}\\ \end{align*}

Mathematica [C]  time = 0.212323, size = 165, normalized size = 3.37 \[ \frac{a \left (8 \tan ^{\frac{3}{2}}(c+d x) \text{Hypergeometric2F1}\left (\frac{3}{4},1,\frac{7}{4},-\tan ^2(c+d x)\right )+3 \sqrt{2} \left (-2 \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )+2 \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )+\log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )\right )}{12 d \sqrt{\tan (c+d x)} \sqrt{e \cot (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cot[c + d*x])/Sqrt[e*Cot[c + d*x]],x]

[Out]

(a*(3*Sqrt[2]*(-2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] + 2*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] - Log[1 -
Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] + Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]) + 8*Hypergeom
etric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2]*Tan[c + d*x]^(3/2)))/(12*d*Sqrt[e*Cot[c + d*x]]*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.028, size = 327, normalized size = 6.7 \begin{align*} -{\frac{a\sqrt{2}}{4\,de}\sqrt [4]{{e}^{2}}\ln \left ({ \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ) }-{\frac{a\sqrt{2}}{2\,de}\sqrt [4]{{e}^{2}}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }+{\frac{a\sqrt{2}}{2\,de}\sqrt [4]{{e}^{2}}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ) }-{\frac{a\sqrt{2}}{4\,d}\ln \left ({ \left ( e\cot \left ( dx+c \right ) -\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) \left ( e\cot \left ( dx+c \right ) +\sqrt [4]{{e}^{2}}\sqrt{e\cot \left ( dx+c \right ) }\sqrt{2}+\sqrt{{e}^{2}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}-{\frac{a\sqrt{2}}{2\,d}\arctan \left ({\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}}+{\frac{a\sqrt{2}}{2\,d}\arctan \left ( -{\sqrt{2}\sqrt{e\cot \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{e}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{e}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*cot(d*x+c))/(e*cot(d*x+c))^(1/2),x)

[Out]

-1/4/d*a/e*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d
*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/2/d*a/e*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2
)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/2/d*a/e*(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)
+1)-1/4/d*a/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(
d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))-1/2/d*a/(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)
^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/2/d*a/(e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))/(e*cot(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.98992, size = 458, normalized size = 9.35 \begin{align*} \left [\frac{\sqrt{2} a \sqrt{-\frac{1}{e}} \log \left (-\sqrt{2} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sqrt{-\frac{1}{e}}{\left (\cos \left (2 \, d x + 2 \, c\right ) + \sin \left (2 \, d x + 2 \, c\right ) - 1\right )} - 2 \, \sin \left (2 \, d x + 2 \, c\right ) + 1\right )}{2 \, d}, \frac{\sqrt{2} a \arctan \left (-\frac{\sqrt{2} \sqrt{\frac{e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}}{\left (\cos \left (2 \, d x + 2 \, c\right ) - \sin \left (2 \, d x + 2 \, c\right ) + 1\right )}}{2 \, \sqrt{e}{\left (\cos \left (2 \, d x + 2 \, c\right ) + 1\right )}}\right )}{d \sqrt{e}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))/(e*cot(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(2)*a*sqrt(-1/e)*log(-sqrt(2)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*sqrt(-1/e)*(cos(2*d*x +
 2*c) + sin(2*d*x + 2*c) - 1) - 2*sin(2*d*x + 2*c) + 1)/d, sqrt(2)*a*arctan(-1/2*sqrt(2)*sqrt((e*cos(2*d*x + 2
*c) + e)/sin(2*d*x + 2*c))*(cos(2*d*x + 2*c) - sin(2*d*x + 2*c) + 1)/(sqrt(e)*(cos(2*d*x + 2*c) + 1)))/(d*sqrt
(e))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int \frac{1}{\sqrt{e \cot{\left (c + d x \right )}}}\, dx + \int \frac{\cot{\left (c + d x \right )}}{\sqrt{e \cot{\left (c + d x \right )}}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))/(e*cot(d*x+c))**(1/2),x)

[Out]

a*(Integral(1/sqrt(e*cot(c + d*x)), x) + Integral(cot(c + d*x)/sqrt(e*cot(c + d*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a \cot \left (d x + c\right ) + a}{\sqrt{e \cot \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cot(d*x+c))/(e*cot(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((a*cot(d*x + c) + a)/sqrt(e*cot(d*x + c)), x)